NETEC Resource Library

High Contagiousness and Rapid Spread of Severe Acute Respiratory Syndrome Coronavirus 2

Elemento

Click for External Resource*


Click to read full article*


*The link above may share a zip file (.zip) hosted on repository.netecweb.org. Zip files will download automatically.
*All other links are external and will open in a new window. If you click an external link, you are leaving the NETEC site, and we do not maintain, review, or endorse these materials. See our terms of use.


Item Type

Publicación

Terms of Use

By accessing these materials you are agreeing to our terms of use, which may be found here: Terms of Use.

Was this resource helpful?


Título

High Contagiousness and Rapid Spread of Severe Acute Respiratory Syndrome Coronavirus 2

Materia

Descripción

Severe acute respiratory syndrome coronavirus 2 is the causative agent of the 2019 novel coronavirus disease pandemic. Initial estimates of the early dynamics of the outbreak in Wuhan, China, suggested a doubling time of the number of infected persons of 6–7 days and a basic reproductive number (R0) of 2.2–2.7.

Fecha

2020-06

Citación

Steven, Sanche, Lin Yen Ting, Xu Chonggang, Romero-Severson Ethan, Hengartner Nick, and Ke Ruian. 2020. "High Contagiousness and Rapid Spread of Severe Acute Respiratory Syndrome Coronavirus 2." Emerging Infectious Disease journal 26 (7).

Resumen

Severe acute respiratory syndrome coronavirus 2 is the causative agent of the 2019 novel coronavirus disease pandemic. Initial estimates of the early dynamics of the outbreak in Wuhan, China, suggested a doubling time of the number of infected persons of 6–7 days and a basic reproductive number (R0) of 2.2–2.7. We collected extensive individual case reports across China and estimated key epidemiologic parameters, including the incubation period. We then designed 2 mathematical modeling approaches to infer the outbreak dynamics in Wuhan by using high-resolution domestic travel and infection data. Results show that the doubling time early in the epidemic in Wuhan was 2.3–3.3 days. Assuming a serial interval of 6–9 days, we calculated a median R0 value of 5.7 (95% CI 3.8–8.9). We further show that active surveillance, contact tracing, quarantine, and early strong social distancing efforts are needed to stop transmission of the virus.

Accesibilidad

Free online as an early release

Collection

Related Resource Topic Exhibits