NETEC Resource Library

In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2).

Item

Click for External Resource*


Click to read full article*


*The link above may share a zip file (.zip) hosted on repository.netecweb.org. Zip files will download automatically.
*All other links are external and will open in a new window. If you click an external link, you are leaving the NETEC site, and we do not maintain, review, or endorse these materials. See our terms of use.


Item Type

Publication

Terms of Use

By accessing these materials you are agreeing to our terms of use, which may be found here: Terms of Use.

Share this page:

Was this resource helpful?


Title

In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2).

Description

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) first broke out in Wuhan (China) and subsequently spread worldwide.

Date

2020-03-09

Citation

Yao, Xueting, Fei Ye, Miao Zhang, Cheng Cui, Baoying Huang, Peihua Niu, Xu Liu, Li Zhao, Erdan Dong, Chunli Song, Siyan Zhan, Roujian Lu, Haiyan Li, Wenjie Tan, and Dongyang Liu. 2020. "In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)." Clinical Infectious Diseases.

Abstract

Background

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) first broke out in Wuhan (China) and subsequently spread worldwide. Chloroquine has been sporadically used in treating SARS-CoV-2 infection. Hydroxychloroquine shares the same mechanism of action as chloroquine, but its more tolerable safety profile makes it the preferred drug to treat malaria and autoimmune conditions. We propose that the immunomodulatory effect of hydroxychloroquine also may be useful in controlling the cytokine storm that occurs late-phase in critically ill SARS-CoV-2 infected patients. Currently, there is no evidence to support the use of hydroxychloroquine in SARS-CoV-2 infection.

Methods

The pharmacological activity of chloroquine and hydroxychloroquine was tested using SARS-CoV-2 infected Vero cells. Physiologically-based pharmacokinetic models (PBPK) were implemented for both drugs separately by integrating their in vitro data. Using the PBPK models, hydroxychloroquine concentrations in lung fluid were simulated under 5 different dosing regimens to explore the most effective regimen whilst considering the drug’s safety profile.

Results

Hydroxychloroquine (EC50=0.72 μM) was found to be more potent than chloroquine (EC50=5.47 μM) in vitro. Based on PBPK models results, a loading dose of 400 mg twice daily of hydroxychloroquine sulfate given orally, followed by a maintenance dose of 200 mg given twice daily for 4 days is recommended for SARS-CoV-2 infection, as it reached three times the potency of chloroquine phosphate when given 500 mg twice daily 5 days in advance.

Conclusions

Hydroxychloroquine was found to be more potent than chloroquine to inhibit SARS-CoV-2 in vitro.

Accessibility

Free online open access

Collection